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2 Introduction

The results reported herein represent a significant step in developing a decision
model and software tool to support affordable Naval acquisition planning in the
presence of uncertainty and severely constrained budgets. Navy decision makers
are faced with difficult tradeoffs among different technology investments, each
promoted by their own subject matter experts. In order to arrive at the right trade-
offs it is essential to place each proposed technology investment in the overall
context of successfully supporting future Navy missions. We aimed to develop a
tool to do just that. In addition, we aimed to help decision makers gain insight into
what is fundamentally a complex problem by supporting ‘what-if” type questions
regarding the decisions at hand, such as: “Which technologies do I need to fund in
order to satisfy a specific Navy objective with high probability?” or “How should
I structure my investments in order to guard against the possibility of a technol-
ogy failure in a certain high-risk/high-payoff investment?” and, most importantly,
“What is a good balanced investment strategy to address the full range of expected
future Navy needs?”.

To help answer such questions, we developed a software prototype (called
AADA-Affordable Acquisition Decision Aid) which

e supports investment decisions among highly diverse proposed technology
investments

e measures future asset performance with respect to a diverse range of high-
level Navy objectives

e accounts for technological risks, uncertainty in future objectives and threats,
and uncertainty in future budgets

e employs genetic algorithms to determine the utility of future assets by per-
forming near-optimal allocation of assets to objectives

AADA is intended to integrate the outputs of performance models, cost mod-
els, and other simulation-based acquisition tools to improve the quality of acqui-
sition decisions, aiming to strengthen Navy warfighting capability while reducing
total ownership cost.

We met the following specific objectives:

e We extended the underlying mathematical model with respect to the model
resulting from Phase I (see section 3).
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e We improved the scope and performance of the optimization algorithms (see
section 4).

e We produced a detailed system design plan for a network centric acquisition
decision aid and a software prototype to meet this design plan (see section
5).

e We developed several Navy-specific acquisition examples to test the soft-
ware prototype and to aid in transitioning the research towards a marketable
product (see sections 6 and 6.3).

In designing and completing the network centric software prototype, we suc-
ceeded in delivering a product that had been originally scheduled for delivery in
a Phase II Option. This software prototype has proved valuable in our efforts to
demonstrate the benefits of our approach to potential customers.

3 Extensions to the Mathematical Model

In Phase I we had successfully demonstrated how a mathematical model describ-
ing the optimal allocation of a fixed collection of assets to targets could be gener-
alized to a model for optimal investment decisions.

In order to more faithfully model realistic acquisition decision processes, we
needed to broaden the scope of the mathematical model to encompass the follow-
ing important concepts:

e We generalized our concept of a ‘target’ to the more general concept of
‘objective’.

e We introduced the concept of scenarios to support acquisition planning for
a flexible force structure that can address diverse requirements and, in par-
ticular, to better model the fact that in multiple possible future worlds faced
by the US Navy, different objectives take on different importances.

e We introduced a capability to model varying degrees of technological risk
associated with different investments.

e We introduced a measure for the expected impact on Total Ownership Cost
of each investment when successfully deployed.

In the following, the resulting mathematical model is elaborated in detail.




potential R&D
investments

ol KN bl

/ \
;técgessful '_g/[ t, 1 ’ t, I ‘ ts ’ 1 1, I t jJ
Z.:;rbsiﬁoned ’—_g i t, l t ’—‘tg 1 ty I ty l | t ts l

o TR T S S S|

performance

Figure 1: Investment Evaluation

3.1 Detailed Mathematical Model

Given an available budget B and a choice of n S&T investments [ = {t1,t2,...,t,},
each with a proposed budget b;, choose an S&T strategy, defined as a subset
S C I, such that the expected S&T cost/performance cpg(S) is maximal under

the constraint
> b <B.
t;€S
S&T cost performance (detailed in the following) accounts for uncertainty
of S&T results and the impact of successful S&T on asset properties such as pre-
dicted effectiveness in achieving multiple objectives, predicted risk while engaged
in achieving those objectives, and predicted TOC.
Given a fixed S&T strategy S = {t1,%2,...,tm}, and a probability p; of suc-
cess for each such investment, the potential results of that strategy are all the
subsets R C S, each with probability

(1) (3)

so that the cost/performance of strategy .S is expressed as

eps(S Z p(R)cpr(R
RCS
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where cpr(R) is the predicted cost/performance of assets after successfully com-
pleting exactly those S&T programs contained in R.

Given an S&T result R = {t1,ts,...,%;}, i.e., a set of successful S&T pro-
grams, we expect to transition the results of those programs in order to improve
the cost/performance of existing assets. In some circumstances, however, we may
choose to fund multiple complementary high-risk S&T programs merely to max-
imize the likelihood for at least one of them to succeed. Should more than one
succeed, it may not be advantageous to transition all of the successes. We there-
fore define the cost/performance of S&T results as follows

cpr(R) = max cpr (T)

where cpr(T') is the predicted cost/performance of assets after transitioning ex-
actly those successful S&T programs contained in 7". Figure 1 depicts the com-
plete subset structure of possible investments and potential outcomes to be evalu-
ated.

When evaluating a collection T = {t1, ts, ..., t } of successfully transitioned
S&T programs, we measure the cost/performance of T in terms of its impact on
a collection of existing assets A = {ay,as,...,q}. In particular, the following




parameters are considered:

effr(a;,0;) effectiveness of asset a; vs. objective o;
rskr(a;, 0;) risk of deploying asset a; vs. objective o;
tocr(a;) annualized Total Ownership Cost of asset a;

We define the resulting TOC change Atoc as

Atoc=1- (3 toer(a:)) / (X tocs(as))

i.e., as a relative improvement compared to the status quo.
Now the combined cost/performance of T is defined as the weighted sum of
cost improvement and predicted asset performance

WeocAtoc + wperfpesz(A, H)

for a suitable choice of weights w¢oc and Wperf and a suitable performance mea-
sure perfr(A, H) of upgraded assets versus a hierarchy H of anticipated objec-
tives.

Asset performance is measured with respect to a mix of scenarios, defined in
a hierarchy (see figure 2). At each level H of the scenario hierarchy with subordi-
nate scenarios Hy, Ho, ..., H,, the overall scenario performance is expressed as a
weighted sum of individual scenario performances,

perfr(A, H) = Y wipy,perfy(A, Hy)

for a suitable choice of relative scenario importances w; and conditional probabil-
ities py, of encountering scenario H; within scenario H.

A basic scenario K is defined in terms of the relative importances it assigns to
individual objectives oy, 0, . .., 0x. Denote scenario-dependent objective impor-
tance as impy(o;). Denote asset importance for assets a;, az, . . . , a as imp(a;).
Asset performance with respect to such scenarios is determined by allocating indi-
vidual assets to objectives so as to maximize the effectiveness in achieving objec-
tives while minimizing risk. An asset allocation is denoted as a mapping f where
f(i) = j when asset 7 is allocated to objective j. Multiple assets may be allocated
to one objective to increase the likelihood of achieving that objective.

We now define the risk component for an asset allocation f with respect to
scenario K:

rSkK,j = Z rskT(ai, of(,))imp(al).
i
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The effectiveness component must account for diminishing returns when allocat-
ing multiple assets to the same objective:

effx; = (1 - II (a- eﬁ"T(ai,oj))) impy(0;).

J f@)=j
Now we can express asset performance with respect to a basic scenario as

perfr (A, K) = max (weeffk,f — wyrsky f)

for suitable weights w, and w, for effectiveness and risk, respectively. This con-
cludes the elaboration of performance evaluation.

4 Optimization Methods

4.1 Background

A special strength of our work has been the ability to make use of MAAP™, a
Prometheus technology for optimizing the allocation of assets to threats based
on expert knowledge of operational parameters of assets and characteristics of
threats. MAAP is an automated decision aid developed for the Air Force to help
automate the real-time allocation of aircraft to targets (hence the acronym MAAP
— Military Aircraft Allocation Planner) in an optimal or near-optimal manner.
MAAP is readily customizable for a broad class of allocation problems and has
been demonstrated to operate effectively on large problems (400 assets by 400
targets). MAAP combines EDM™, the Extended Dependency Model originally
developed by the Principal Investigator to measure the effectiveness of the Trident
Command and Control System [3], with a genetic algorithm (GA)-based opti-
mization engine. This optimization engine continues to represent the core of the
AADA optimizer.

During Phase II of this project, we further developed this technology to ac-
commodate the extended mathematical model described in section 3. The AADA
optimizer has been structured in a hierarchy of layers which successively break
up the overall optimization problem into simpler problems. The innermost layer,
the Scenario Level Optimizer, draws on the MAAP allocation engine.

4.2 Structure of the Optimizer

The complete list of layers is given in the following (top-to-bottom):
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1. S&T Level Optimizer

(a) S&T funding layer

Enumerates the maximal affordable collections of S&T programs, i.e.,
the sum of their budgets meet the budget constraints and no further
programs can be added without violating the budget limit.

(b) S&T uncertainty layer

For each such collection of fundable programs, accounts for the un-
certainty in S&T by considering all subsets of successful programs in
accordance with the combined probability of the subset.

(c) Upgrade deployment layer
For each collection of successful S&T programs, considers all subsets
of resulting upgrades which may now be considered for deployment.
(d) Objective performance layer

For each subset of deployed upgrades, determines its impact on TOC
and balances cost against the resulting performance of upgraded assets
versus existing threats. Asset performance is measured with respect to
each of the scenarios in the objective hierarchy and results are com-
bined in a weighted sum depending upon user specified importance
values and probabilities.

2. Scenario Level Optimizer

(a) Asset allocation layer
Employs previously developed Prometheus GA algorithms to rapidly
determine near-optimal allocations of collections of assets to objec-
tives.

(b) Objective function

For a given allocation of assets to objectives, determine its overall
value.

4.3 Performance considerations

The two most important performance concerns in the present prototype are the
performance of the innermost loops and the combinatorial aspects of the outer op-
timization layer. As for the former, we were able to adapt proprietary Prometheus
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algorithms which had already been heavily optimized. To limit the combinato-
rial explosion in the outer layer, we employed dynamic programming techniques
which ensure that any overlap which could result from evaluating subsets (de-
ployments) of subsets (S&T successes) of subsets (funded S&T programs) of a
collection of S&T programs considered for funding is avoided.

As a result, the prototype produces a recommended S&T funding strategy for
our USW example (see section 6.3) in approximately 30 minutes on a 900MHz
AMD Athlon PC running Linux. This example covers 7 scenarios, 10 different
objectives, 8 existing assets and 13 potential technology investments.

The most important remaining performance limitation is that the number of
individual investments may not get very large. The limit when running on work-
station class hardware is about 20 different candidate investments. We expect to
push this boundary beyond 100 investments in Phase III.

5 System Design and Prototype Software

A principal accomplishment of this Phase II project has been the completion of
a runnable Web-based prototype client/server software system for specifying and
running S&T type optimization problems. The client component is completely
written in Java and can be run on a large range of platforms, from workstations and
desktops to handheld devices and emerging Internet appliances. The server soft-
ware consists mostly of a C-based optimization package and is presently hosted
on a Linux-based server.

5.1 Client

The AADA client software performs two major functions, as described in the
System Design Plan (see appendix A.) It serves as an acquisition scenario editor
to specify complex aquisition problems and it provides a postoptimization analysis
capability to inspect and evaluate system recommendations.

For the first of these functions, the System Design Plan called for three layers
responsible, respectively, for defining objectives, existing assets, and S&T pro-
grams for developing asset upgrades. In developing the prototype software, we
have found it useful to further subdivide the first of these layers and to provide
separate layers for specifying basic objectives on one hand and the scenarios as-
signing importances to those basic objectives (depending on a user-defined con-
text) on the other.
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Figure 3: Objective layer (top) and scenario layer (bottom)

In the following, we will illustrate the various layers with screenshots from
the initial version of our ASW in the Littoral example (see section 6.1).

Layer I: Objectives. The objective layer (figure 3) permits editing of a list of
the future objectives which must be addressed by future assets. Performance of
potential asset upgrades is measured with respect to predicted improvements in
meeting those objectives. An objective may be, for example, to counter a specific
enemy threat, or to perform a specific task.

Layer II: Scenarios. Depending on a given situation, individual basic objectives
may become more or less important. Future assets must be sufficiently flexible to
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Figure 4: Asset layer

perform in a range of diverse situations. These might include, for example, spe-
cific regional conflicts, particular phases in a Naval campaign, or the emergence
of a possible but uncertain threat. Scenarios may be nested to any depth so that
we could, for instance, specify the phases of a campaign responding to a potential
threat emerging during a specific regional conflict. For each scenario, its likeli-
hood and its relative importance, if it occurs, must be specified. All probabilities
are conditional with respect to the occurrence of the parent scenario.

Layer III: Assets. Here the user may specify the characteristics of existing assets
(see figure 4). For each type of asset listed, the following parameters must be
given:

e the number of existing assets of this type

e the value of each asset (measuring the negative impact of losing such an
asset relative to other asset types)

e an estimate of present TOC per platform

Of special importance are parameters P, specifying the degree of success that can
be expected when allocating one asset of the given type to each of the basic objec-
tives. During optimization, multiple assets may be allocated to the same objective
to increase overall performance. Similarly, parameters P specify the likelihood
of outright loss of an asset when allocated to each of the basic objectives. Py and
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Figure 5: Upgrade layer

P, are numbers between 0 and 1, with O representing ‘no impact’ and 1 repre-
senting ‘complete success’ or ‘certain loss’, respectively.

Layer 1V: Upgrades. After defining the framework for acquisition decisions in
Layers I-III, the range of potential acquisition choices is defined in the upgrade
layer (figure 5). Before being able to deploy an upgrade to existing assets, an S&T
investment is required. For each upgrade under consideration, the user specifies
its S&T cost. Total S&T costs must stay strictly within a fixed budget. S&T
does not result in a deployable upgrade with certainty, but with a user-defined
probability. When successful, the resulting upgrade is characterized by its effect
on asset parameters, in particular, the predicted impact on TOC, Py, and P,.

The above four layers together comprise the acquisition scenario editor and
allow the definition of complex decision problems. After such a problem has been
specified, an ‘Optimize’ function may be activated from a system menu. This
transfers a machine representation of the optimization problem to a server (see
section 5.2). The server performs the computations required to determine acquisi-
tion recommendations which are transmitted back to the client and presented for
postoptimization analysis, described in the following.
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Layer V: Optimizer Output. While the previous layers dealt with data entry,
the output layer (figure 6) permits reviewing of results. The system presents its
top three acquisition recommendations, as well as an evaluation of a hypothetical
‘no-upgrade’ option, to help visualize projected improvements versus the status
quo. An overview screen lists total S&T cost for the proposed upgrades, a mea-
sure of the expected overall performance versus the stated objectives, as well as
expected overall TOC. A second screen details the upgrades recommended for
S&T funding, along with their S&T cost.

5.2 Server

The bulk of the server consists of C-based optimization software structured along
the lines described in section 4.2 The interface between the optimization code and
the Java client is provided by a small Java package using the Java RMI (remote
method invocation) facility. The server also manages access to the AADA system
for multiple users. In the short term, this has proven useful for purposes of demon-
strating the AADA software to potential customers. In the long term we expect to
support multi-user collaboration on complex acquisition decision problems.
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6 Navy-specific acquisition examples

Three examples were developed in the course of this program. These examples
were used to demonstrate the power and utility of AADA. The first is labeled
ASW. The second, an example of programs or exploratory developments to help
the Navy deter and counter weapons of mass destruction, is labeled WMD. The
third example, called USW, enhances the first by adding new levels of complexity.

6.1 ASW

This first example was used to develop and demonstrate the AADA concept. It
is representative of a class of acquisition decisions that program managers regu-
larly encounter. Furthermore this type of problem cannot be solved using linear
programming. A genetic algorithm or other non-linear technique is needed. The
structure of AADA emerged from this example, which constituted our first proto-
type.

The context of the problem includes two operational theatres with six threats,
or objectives. The asset mix includes air, surface and subsurface ASW platforms.
There are six potential technology upgrades, two for each asset class. The problem
is to decide which portfolio of technology upgrades within a fixed budget would
provide the most performance while minimizing total ownership costs.

A generic description of the problem, its structure, and the relationships of the
various factors can be found in appendix B, “Affordable Acquisition Decision Aid
(AADA) Descriptive Guide for Analysts.”

6.2 WMD

This problem was defined to demonstrate the ability of the AADA process to ad-
dress one of the four strategic concepts of Submarine Undersea Warfare. Counter
and Deter Weapons of Mass Destruction, as a strategic concept, is at a higher
level of abstraction than the objective in the ASW example. This example di-
rectly addresses concerns faced by the program manager for submarine undersea
warfare technologies (NAVSEA93). Therefore, it serves as a demonstration that
AADA and its accompanying analytical process can be used to provide structure
to a problem area that had been devoid of approaches.

The WMD problem includes chemical, biological and nuclear delivery vehicle
threats; near-shore, inland, and shipborne. Two different geographical areas are
considered as well as a combined conflict. The assets include Unmanned Aerial
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Vehicles (UAV) configured for supporting neutralization of ballistic missiles, un-
supported ground surveillance, and signal intelligence; Special Operations Forces
with biological/chemical and nuclear delivery vehicle neutralization equipment;
Tomahawk Land Attack strike, Anti-Surface Ship strike, and Anti-Ballistic Mis-
sile (ABM) missiles; and platform organic signal intelligence.

The effort here showed that AADA can be used successfully at high levels
of abstraction. Details of this effort were provided in presentations to ONR, the
Undersecretary of Defense for AT&L, and NAVSEA93 Analysts.

6.3 USW

The foundational ASW problem was enhanced with a third operational environ-
ment (the Yellow Sea), a new warfare area (undersea mine warfare), and a new
class of asset (a joint asset). This new scenario is a combined ASW/Mine/Undersea
warfare problem in three operational locations. The asset classes are air (P3, SH-
60R), submarine (6881, SEAWOLF, VIRGINIA), surface (DD, DDG, FFG), and
coordinated assets. Coordinated assets are combinations of two or more of the
previously mentioned platform types. Of thirteen proposed technology upgrades,
eight are solely ASW improvements, three are solely mine improvements and two
are improvements in both ASW and Mine warfare. Five of these technology up-
grades are specific to one type of platform, five are specific to two types and three
are applicable to all asset platforms.

These USW enhancements were stimulated by participation at the NDIA Un-
dersea Warfare Conference in September 2000, during which CNO N74 presented
an overview of a current Undersea Warfare problem. In this conference multiple
presenters reiterated a common acquisition problem:

e There is not enough money to do everything.

e No existing methodology supports balanced investment decision-making
and ties it to effects-based mission performance in the field.

Using this scenario, we demonstrate that AADA can provide a balanced set
of investment strategies to optimize operational effectiveness across an extremely
complex decision problem.
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7 Transition Efforts
71 ONR

Potential for AADA application to ONR programs has been and continues to
be investigated in coordination with the program technical advisor at ONR, Ms.
Katherine Drew, Code 362. Two formal briefings and several informal collabo-
rative technical discussions have failed to identify a specific ONR program that
has a decision problem that correlates well to the AADA multiple objective tree
structure.

7.2 NAVSEA93-SUBTECH

RADM C. Young and his functionary staff (NAVSEA93/NUWC) of the Subma-
rine Technology Office (SUBTECH) were briefed on the benefits of AADA. This
briefing and subsequent working sessions with the NUWC SUBTECH technical
advisor, Mr. Ron Pikul, resulted from discussions with RADM Young at the Sub-
marine Technology Symposium in April 2000. SUBTECH documents were ana-
lyzed and the structure of the decision problem faced by the SUBTECH manage-
ment office was found to match the structure of AADA. Four follow-up meetings
were held, one included a detailed discussion on how AADA would assist the
decision makers and described the cost benefits and risk reduction value. Even
though the decision analyses are applicable, no funding has been made available
in FY2001 to transition the AADA process to SUBTECH.

7.3 CNO-N74-UNDERSEA WARFARE

CAPT G. Ferguson, N74, presented the status of the Navy Undersea Warfare chal-
lenge at the National Defense Industrial Association (NDIA) Undersea Warfare
Symposium in Groton, CT in September 2000. The decision problem faced by
N74 parallels the structure of AADA. The USW example, described in section
6.3, was derived in part as a result of CAPT Ferguson’s presentation. Meetings
were conducted with N74 personnel (including the Science Advisor, Mr. Barry
Raff) and ONR 362 in December 2000. Follow-up meetings were held in January
2001 and the applicability of AADA to assist in the formulation and process for
the decisions associated with an Integrated Sponsor Program Plan (ISPP) for Un-
dersea Warfare (USW) was confirmed. Initial funding of $10K has been identified
by the N74 Science Advisor. Discussions with ONR 362 confirmed that additional
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funding originating with N74 or a surrogate is necessary to initiate and complete
an application of AADA to the USW ISPP problem.

74 OUSD-AT&L

Three briefings of AADA to Mr. George Leineweber were held from September
through December 2000. Mr. Leineweber understands the decision structure of
AADA and its applicability to DoD acquisition programs. He has provided multi-
ple potential contacts and program personnel as candidates for application of the
AADA process. Following up with these contacts has to this date not produced
a viable funded interest. Mr. Leineweber suggested that the program be briefed
to Dr. Paris Genalis, Undersea Programs director for OUSD-AT&L; this will be
scheduled during follow-on efforts.

7.5 NAVAIR

Cost analysts within the Naval Air Systems Command (NAVAIRSYSCOM) at-
tended an AADA presentation at the 34th Annual Cost Analysis Symposium (34th
ADODCAS) in February 2001. Interest in applying AADA to the acqusition pro-
grams for Naval Aircraft was sparked by the mission effects based performance
factors used in AADA. The decision faced by these analysts concerns the number
and types of aircraft to acquire constrained by a budget with an optimized perfor-
mance against a variety of threats. No funding has been obtained from NAVAIR
as yet, however, discussions will be continued throughout FYO1.

7.6 BMDO

The Ballistic Missile Defense Organization (BMDO) cost analysts are also inter-
ested in AADA as a result of the 34th ADODCAS briefing. The decision struc-
ture faced by BMDO analysts correlates highly with the AADA structure. No
progress has been made up to this time in selecting a representative problem from
the BMDO office. Follow-up discussions and collaboration are intended.

7.7 OUSD-PA&E

Mr. Steven Miller of the Office of the Undersecretary of Defense, Programs,
Analysis and Evaluation, (OUSD, PA&E) requested the AADA team to brief the
project at the 34th ADODCAS. This briefing was part of the Advanced Track

17



[8 O AADA Client Demo

T1 Asset

12 4 P3C

13 538

ki : SSN 6881 ;

5 e S

T6 [| SSN SEAWOLF Class | 068
i| SSN Yirginia Class 65!
: DD/DDG

FFG |

Figure 7: GUI design for new AADA client software

training program at the symposium. Mr. Miller was introduced to AADA in
December 1999 and has been kept informed of its development on a continuing
basis.

At the 34th ADODCAS, Major Robert (Rob) Flowe, USAF, made the obser-
vation that a close relationship exists between the AADA process and the Evo-
lutionary Acquisition (EA) process currently espoused by DoD in newly revised
acquisition guidance represented in DoD Instruction 5000. AADA readily fits into
providing support to the EA decision points and can provide a quantifiable con-
nection to operational effectiveness. Follow-up discussions with Major Flowe and
other DoD acquisition professionals will continue in FYO1.

8 Follow-On Contract Objectives

After having predelivered a network-centric AADA software prototype (see sec-
tion 5) that was originally scheduled for completion in a Phase II option phase, we
now intend to use the contract replacing the Phase II option to turn this prototype
into a more mature and practical form. In doing so, we can draw both on our
experiences with setting up and running AADA example applications (see section
6) and on feedback from potential customers and other interested parties to whom
we demonstrated the AADA prototype software. The intention is for the software
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to become an effective marketing tool in its own right.

This means that most short-term development work will concentrate on im-
proving the AADA front end, i.e., the AADA client software, but also on user
documentation which will become easily accessible online. As for the client im-
provements, the planned new interface will require less navigation in hierarchical
tree structures and will display data in tabular form. This will facilitate more con-
venient data entry and will enable AADA users to keep track of ‘the big picture’.
A demonstration screenshot of the new interface is shown in figure 7.

The following specific improvements are planned at present:

o make client sufficiently convenient for effective practical use

— extensive use of tables

— provide default/guide values for TOC, effectiveness and risk when en-
tering effects of upgrades

— present input screens as ‘forms’ generated from a few basic inputs
- allow copying and pasting of data between AADA and commercial
spreadsheets

e provide complete structure editing

— allow convenient construction of new examples from scratch

— allow convenient addition and deletion of objectives, scenarios, assets,
and upgrades

e make client more transparent to new users

— provide online help

— use of ‘tool tips’ to explain some basic AADA concepts
e enhance AADA functions

— allow selective ‘fixing’ or ‘blocking’ of investments

— implement colors of money — different budgets for different classes of
upgrades

— automatic basic sensitivity analysis
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Appendices

A System Design Plan

A.1 Introduction

This document defines a functional-level design and architecture for the prototype
Affordable Acquisition Decision Aid (AADA) software system. The primary goal
of this effort is a flexible and extendable decision aid that incorporates the afford-
ability constraints, dependency modeling, and allocation optimization approaches
set forth in Phase I of this SBIR effort. Important design goals are:

e The ability to determine near-optimal acquisition strategies in the presence
of uncertainty throughout the many factors that define an acquisition sce-
nario,

e The ability to estimate the overall utility of a collection of assets resulting
from an acquisition strategy in terms of their mutual cooperation in meeting
high-level Navy objectives,

e The ability to recommend acquisition strategies that employ affordability
constraints in conjunction with the outputs of the two previous goals,

e A database structure in which scenario-specific and general parametric de-
scriptors of acquisition scenarios are stored,

o A network-centric user interface via which users can access and control all
functions of the system.

The second objective will be achieved by simulating, at a manageable level of de-
tail, the operational allocation of potential assets to strategic objectives. In partic-
ular, the system will support decisions concerning allocation of Science & Tech-
nology (S&T) funds to support future Navy needs. Key functions of the system
will include:

e An acquisition scenario editor supporting user specification and modifica-
tion of acquisition options, including

— quantification of expert inputs
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expected Total Ownership Cost (TOC) of assets to be acquired

the nature and structure of objectives to be met

the expected performance of assets in achieving those objectives

uncertainty in future objectives (e.g., uncertainty as to which future
threats will materialize and will need to be counteracted)

the technological uncertainty for S&T investments

e An automatic optimization capability based on available acquisition options
and scenario data defined by the user, resulting in near-optimal acquisition
strategies, subject to affordability and viability constraints. Optimality will
be with respect to measures of effectiveness (MOEs) which, given a can-
didate acquisition strategy, will be suprema of user-specified functionals
whose parameters come from a database of general and scenario-specific
data. Metrics of uncertainty (e.g., low-order moments of their probability
distributions) will be associated with the values of MOEs whose functionals
include uncertain data.

e A postoptimization analysis capability that will permit

- viewing of acquisition recommendations
— querying of reasons behind system recommendations

— comparison of alternative recommendations, some of which may be
defined by the user

— determination of how the effects of uncertainty about particular pa-
rameters in a scenario are manifested in the recommendations

A key property of the system will be network-centric operation. The AADA
system will be hosted on remote servers which take heavy processing and storage
requirements away from the client side. User interaction with the AADA sys-
tem will take place through Commercial Off-The-Shelf (COTS) technologies like
standard Web browsers and, more specifically, XML and Java. Thus, the client
software will be compatible with a large number of platforms and configurations,
ranging from portable devices to powerful workstations. Multi-user collaboration
will be supported by shared access to a centrally managed database which also fa-
cilitates system administration and allows future extensions to support automated
backup functions and secure access control.
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A.2 User interface
A.2.1 Acquisition scenario editor

An acquisition scenario will be subdivided into a sequence of three layers of data:
projected future objectives, presently available assets, and potential acquisitions.
Each layer of data definitions must be completed before entering subsequent lay-
ers. Definition of data in each layer will be with respect to data in the preceding
layers.

e Layer I — Projected future objectives. Definition of future objectives (such
as meeting projected future threats) will precede all other data input as ob-
jectives will be central in defining future force requirements, which in turn
will set the framework for the acquisition process. Two principal interlock-
ing data structures will be provided by the AADA system for defining the
nature of future objectives:

— The basic objective set. These will be the basic objectives to which fu-
ture assets must be allocated. A basic objective might be, for instance,
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acquiring Naval superiority in a regional theater of operations. The
basic objective set will be the same throughout a given acquisition
problem, with the relative weights of individual objectives changing
depending on the scenario under consideration.

— Objective scenarios. Scenarios may be defined in a hierarchical style
in the following way. They may be basic, in which case they will
be represented by an allocation of weights to the individual basic ob-
jectives, or they may be composite, in which case they will consist
of a collection of sub-scenarios, each given a weight to determine its
importance with respect to its peers, and a probability of occurrence
(which may be 1) given the occurrence of the parent scenario.

Arbitrarily complex objectives can be constructed from these building blocks.
A sample objective hierarchy is shown in Figure 8.

e Layer Il — Presently available assets. Next to the future objectives, assets
presently available will be the most important reference point for defining
acquisition requirements. Each available asset will be defined in terms of

1. its TOC, annualized

2. its probability of achieving a projected basic objective as defined in
Layer I above (e.g., probability of kill versus a projected threat)

3. probability of its loss during assignment (e.g., probability of coun-
terkill)

4. its importance
e Layer IIl - Potential acquisitions. Potential acquisitions, which will include
upgrades of current assests, will be described in terms of the following pa-
rameters
1. deployment cost

2. degree of improvement provided by acquisition, compared to existing
assets

3. change in TOC to existing assets after acquisition

4. degree of technological uncertainty (probability of achieving improve-
ment specified above)
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In addition, a total budget will be specified as a hard constraint for acquisi-
tions.

Complete layers may be stored and retrieved (to/from a central database), in
order to facilitate cooperative development of acquisition scenarios and to allow
experimentation, e.g., by varying acquisition options assuming a given definition
of objectives and a fixed existing force structure.

A.2.2 Optimization engine

The interface to the optimization engine will be more straightforward than the
scenario editor. An initial screen will present the user with the option to redefine
default optimization parameters such as

e maximum optimization runtime — the best acquisition strategies found within
the runtime limit will be reported

¢ number of recommendations to be reported back, top-to-bottom
e size of gene population in the genetic algorithm (GA) optimizer
e ratio of genetic recombinations to mutations

A start button will initiate the optimization process on the AADA server.
The second screen associated with the Optimization Engine will provide real-
time controls, such as

e return to scenario editor, terminating the optimization process

e report partial results, cutting short the optimization process (generally with-
out considering all feasible acquisition options)

Upon completion, the optimization engine will transfer control to the postop-
timization analysis tool, starting it off with a high-level view of the top acquisition
recommendations.

A.2.3 Postoptimization analysis tool

The postoptimization analysis tool will provide two principal functions, inspec-
tion and comparison of acquisition recommendations:

24



e Inspection of acquisition recommendations. Initially, the analysis tool will
present a top-level view of the best acquisition recommendations, specify-
ing the subset of potential acquisitions selected along with the total deploy-
ment cost. In addition, for each recommendation, the asset performance will
be reported both as a whole and with respect to the top-level breakdown
into subobjectives. For each such subobjective that is further subdivided
into component subobjectives, a button will be provided for displaying per-
formances versus the components and so on, recursively. For each basic
subobjective, a button will be provided for displaying the allocation of as-
sets to the corresponding basic objective set. Reported performances will
typically include both effectiveness measures and uncertainty metrics.

e Comparison of acquisition recommendations. Two alternative recommen-
dations may be compared side by side, highlighting the advantages and the
disadvantages of one allocation versus another. Any errors in input that
may have caused unreasonable recommendations can be traced to their ori-
gin and amended.

A.3 Measure of effectiveness (MOE)

The nature of the MOE for a given choice of acquisition strategy, i.e., its esti-
mated level of performance versus alternative acquisition strategies, will be cru-
cial in defining and understanding the behavior of the AADA system and will be
important for predicting the computational requirements of AADA’s optimization
engine. The AADA MOE will measure acquisition performance versus objec-
tives in terms of likelihood of achieving objectives and expected cost in achieving
them. Objectives may be defined as hierarchical structures of subobjectives to any
desired degree of complexity. Each subobjective will have a weight defining its
importance and will contribute to the parent objective relative to its weight (see
figure 8). The MOE computation will be structured accordingly. The overall MOE
of an acquisition strategy will be just the degree to which the overall objective will
be met by the future assets following the acquisition. For an objective composed
of subobjectives, the overall MOE will be a weighted combination of the MOE
with respect to each of the subobjectives. For an objective which is not itself com-
posite, the acquisition scenario data will define a set of weights for a fixed set
of basic objectives. The AADA system then performs a GA-based optimization
to determine near-optimal allocations of future assets to these basic objectives.
Based on the predicted performance of individual assets versus individual basic
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objectives — and the weights of those basic objectives — the MOE computation will
determine the degree to which the objectives are met as whole. It will be possible
to associate metrics of uncertainty that characterize statistical distributions with
both weights and performance estimates. Thus, we have a complete hierarchical
MOE computation composed, ultimately, of a multitude of independent allocation
problems involving uncertain parameters.

The total number of allocation problems to be solved will be proportional to
the number of subobjectives which are not themselves parents of composite sub-
objective nodes. Considering that each subobjective will be defined individually
by an AADA user, the increase in computational requirements relative to that of
the single allocation case of the Phase I product remains manageable in the sense
that there will be no combinatorial explosion introduced by the hierarchy.

A.4 Modular system decomposition and data flow

A data flow diagram is presented in figure 9.

AADA Client AADA Server

scenario data

Optimizer

Acquisition ;
Scenario Editor || load data

Postoptimization
Data Collection

recommendations

Postoptimization

Analy5|s Tool postoptimization data

store final
analysis results Database

Figure 9: Diagram of AADA system modules and data flow
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A.4.1 C(lient side modules

1. Acquisition scenario. This module will process user input to define acqui-
sition scenario data as described in section A.2.1. It will also have access
to a central database for storing/retrieving data to be used for revision and
experimentation. The data produced by the editor, including control options
(see section A.2.2), will become the input for the optimization engine.

2. Postoptimization analysis tool. This module will receive run-time status
reports from the optimization engine. It will allow detailed review both of
AADA recommended and user-defined allocations. A link back to the editor
will be provided for the identification and correction of errors, as well as
further experimentation. The postoptimization analysis module will have
the ability to store the final state of the project to the central database for
later revision. The top recommendations and optimization status report may
be saved locally, as well as remotely. A hardcopy may also be produced.

A.4.2 Server side modules

1. Optimization engine. This module generates near optimal acquisition strate-
gies based on the input data obtained via the acquisition scenario editor. The
optimization engine consists of two optimization layers.

The upper layer starts by determining the maximal and feasible acquisition
strategies — feasible in the sense that they respect budget constraints, maxi-
mal in the sense that no further individual acquisitions can be made without
violating those constraints. The filtering of viable acquisition strategies in
this sense is shown in Figure 10.

For each such choice, the upper layer determines the expected impact on
existing assets, such as improvements to their performance with respect to
specific Navy objectives, or TOC improvements.

In order to determine the quality of a given acquisition strategy, the lower
optimization layer simulates allocation of the resulting assets (taking into
account any improvements) to Navy objectives. This is done by employing
a GA-optimization algorithm using the MOE described in Section A.3 as
the genetic viability function.

During optimization, this module generates status information for use by
the postoptimization analysis tool.
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2. Database module. This module will store and organize project data for
shared access. Data exchange will be performed directly with the client
modules.

A.5 System implementation and deployment

The prototype system will be developed on a Pentium-based PC under Redhat
Linux. As discussed, user interaction with the system will be entirely via a Web
browser. As a result, the client component will be supported by any computer
with a Java-capable browser and network access to the server. Parts of the AADA
server component will be developed in Java. Other parts will be written in a
higher-performance language (C++). The server portion of the prototype system
will be readily portable to other Unix T™/Linux platforms and will also be com-
patible with Windows NT.
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B AADA Descriptive Guide for Analysts

Introduction
Class of problem -
Choice of portfolio of near Strategy/Goals
optimal set of investments to Ranked sets
accomplish a strategy or set of - (portfolios) of
goals Ows near optimal
Methodology - Uses Assignments nvestments
mathematical model that ~g
mimics natural selection to Assets/Resources T
select individual investments “Fitness" Improvements AADA
that result in optimal or near
optimal fitness scores. Fitness Improvement/Investment Population

values are established based upon the contextual or environmental criteria. The core of
the existing computational aid is a genetic algorithm (GA). The GA aims to breed a
selective group of individual investments that produce "offspring" better than the parents.

Analysis - Requires decomposition of the problem into a particular form. The
problem set-up is critical to effective use.

AADA is an aid to computation that may need to be modified from its current
(8/2000) embodiment of the algorithm to accommodate user unique problems. A generic
model and/or building blocks for user assembly and implementation may be available in
the future.

Problem type

Goals - The computational objective is to obtain Pareto optimality for n
investments in an n-1 dimensional W
portfolio space. Pareto optimality is the
joint maximal advantage of pairs and Y TN Pareto Set
because the GA searches for local advantage (maximal joint advantage)
optimality of groups the results will be
near-optimal selection.

Decision characteristics - Y minimum
AADA in its current embodiment solves /\ acoeptable
multiple criteria decision-making (DM) X minimurm acceptable .
problems concurrently for multiple X agvantage
objectives and multiple attributes.

Complexity type - AADA solves dynamically complex problems and is an
"effects" based model. This is as opposed to Campaign Analysis (CA) models that solve
detail complex problems based on attrition.

Knowledge acquisition - A foundation to the solution of any analysis problem is
the collection and interpretation of information from subject matter experts. AADA is as
subject to the Garbage In - Garbage Out (GIGO) problem as any other computational
tool. The research team has identified several valid methods and sources for obtaining

Game Space
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data that has integrity at the precision needed for AADA computations. It is
recommended that users consult with the research team to address this pivotal area.

Contextual Definition

Hierarchy - The current AADA structure is rooted in "super goals", vision or
ideals such as National Security, hypothesized future worlds or other comprehensive but
meaningful high level objectives. Strategic concepts such as those used by the Shell Oil
Company or Value (e.g. USAF) based concepts form the highest computationally
significant level.

Scenarios - While AADA uses a scenario concept it is not singular as in CA
models. Multiple scenarios to the extent needed to adequately reflect the intention of the
high level objectives can be defined for AADA computation. Each scenario must be
defined in terms of the attributes and measures that are used in the achievement of goals.
For example, if accomplishing the high level objectives is based on achieving and
maintaining likely superiority in a regional conflict, within a given acquisition cost, total
ownership cost and likelihood of success, then these factors must be represented in some
cost sink and probability of success information at the lower levels of the problem. This
will be illustrated in more detail below.

Core analysis

Mapping and consumption - The GA algorithm requires that when a mapping,
i.e. a basic scenario, of resources or assets (RA) to objectives or threats (OT) occurs that
for any given mapping the resources or assets are consumed at the required level and
cannot be used again in that mapping.

Multiple assignment options - Multiple RA can be assigned to individual OT
and vice versa as long as the RA fitness attributes are not completely consumed.

Objectives/threats (OT)

Examples - OT could be individual platforms or sites, regional areas or at
whatever level of abstraction that the analyst establishes, as long as they are consistent in
scope among one another.

Characteristics and attributes - OT have probability of occurrence, numbers in
inventory, lethality (importance), hardness, economic value or similar metrics.

Resources/Assets (RA)
Examples - RA could be the same types of objects as the OT, however, they must
be logically mappable to either neutralize or accomplish the respective OT.
Characteristics and attributes - RA have value, numbers in inventory,
likelihood of accomplishing the objective for each type of OT, risk in attempting to
accomplish the objective for each type of OT, cost of ownership or similar metrics.

Improvements/investments @

Examples - The investment or improvement portfolio will be made up of
whatever the program manager needs to select. These objects must serve to affect the RA
characteristics and attributes in a positive (or negative) way.

Characteristics and attributes - I’ have cost and benefits to the RA
characteristics and attributes relative to the OT.
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(Near) Optimization

Ideal - The ideal optimization would be the portfolio of investments and
improvements that provides the best cost/benefit ratio in absolute terms. Because the
individual selections are chosen to be part of a given portfolio in a probabilistic fashion
with respect to their fitness the AADA solution will provide "highly fit" individuals but
not necessarily "the best".

Choices for real decision-makers - AADA provides candidate portfolios or
groups with a measure of fitness to the decision-makers' criteria. It is easy to rerun
AADA to establish the sensitivity of the particular problem to variations in input data.

Summary and conclusions

This document is a draft descriptive guide intended to begin the process of
knowledge transfer from the research team into the user and application community. At
this time early adapting users will need support from the core team because several
documented but resolvable issues need to be addressed by the joint user/research
community. Given the ease of use of the actual tools and processes, as the knowledge
base and user documentation mature it is expected that the AADA tool will be easily
employed by analysts with minimal additional training.

More information:

Please contact Jim Byrnes or Gerald Ostheimer at Prometheus Inc. (401) 849-
5389, e-mail at jim@prometheus-inc.com. For further analysis information please contact Joe
Kranz or Denis Coffey at A&T, Inc. (401) 849-5952 x3114, e-mail at jkranz@anteon.com.

This work was sponsored by the Office of Naval Research (Katherine Drew) in response to Small
Business Innovation Research proposal number 97122043 of 1 February 1999.

AADA™ is a trademark in the registration process by Prometheus Inc.
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